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This paper presents a small and complete set of analytic equa- length show that the model calculations can usefully predict
tions which can be used to design a birdcage coil and predict its birdcage performance, can aid in choosing dimensions and
resonant modes a priori before construction begins. The simple capacitor values before construction begins, and can mini-
models used include full mutual coupling between all meshes and mize or eliminate the iterative tuning/rebuilding which has
give the resonant spectrum for both unshielded and shielded coils. often accompanied practical birdcage construction.
The equations are valid, in compact form, for lowpass, highpass,

To this end, a solution for the resonant modes of thebandpass, and more general birdcage structures. The resonant-
birdcage using the mesh eigenvalue approach of Tropp (7)mode frequencies are shown to depend on the spatial discrete
and Joseph and Lu (8) is presented which makes clear theFourier transforms of the vectors of electric and magnetic coupling
dual transform nature of the solution. Although portions ofaround the coil, making obvious the connection between the reso-
this treatment have appeared elsewhere, the presentation herenant and the spatial frequencies of each mode. Inversion of the

equations provides values of all of the mesh inductances and cou- is rigorous, and the results are of wider scope than previous
plings from the measured resonance frequencies following coil con- treatments and motivate new results. The inversion proce-
struction, a result of considerable practical importance. Experi- dure of the second section is one such new result and shows
mental results are presented which show that these methods regu- how all the inductance values can be derived from the reso-
larly predict operating frequencies to a high degree of accuracy nant frequencies measured for a birdcage coil. This result is
for both unshielded and shielded coils. q 1997 Academic Press used to check the accuracy of the inductance calculations

presented in the third section, which, for the practical-
minded reader interested in predicting coil behavior, contains

INTRODUCTION perhaps the most important new information. There, analytic
equations for carefully chosen approximate models are pre-
sented and used to describe the coil. The last section showsSince its introduction over a decade ago, the birdcage coil
that the predictions agree closely with observations fromhas become a mainstay of NMR imaging and, to some extent,
actual coils, in some cases to within a fraction of a percent.spectroscopy, due to its highly homogeneous transverse RF
A preliminary report of this work as applied to lowpass coilsmagnetic field and the ease with which it may be operated
has appeared separately (9) .in quadrature to produce circularly polarized fields (1) .

Throughout this period, the practical goal of predicting bird-
RESONANT AND SPATIAL MODES

cage operating frequencies has remained difficult. On the
OF THE COUPLED BIRDCAGE

one hand, empirical approaches are widely used, aided by
design guides (2) and measurements on portions of coils Consider a symmetric N-leg ‘‘bandpass’’ birdcage con-

taining capacitors in both its endrings and legs, a portion of(3) , while, on the other hand, there are three-dimensional
numerical simulations capable of also accounting for electric which is shown in Fig. 1. This structure includes the lowpass

and highpass coils as special cases when 1/C1 or 1/C2 isfields, loading, and other effects (4, 5) , but which require
sophisticated codes (and users) , powerful computers, and set to zero. We label the inductance of a single mesh Lmesh ,

note that the flux coupling Mm between any two meshessometimes, significant interpretive skills. The approach of
this paper lies between these by presenting simple and practi- depends only on their separation m, and define M0Å Lmesh for

convenience. Where earlier treatments sum self- and mutualcal approximate calculations which produce results of useful
accuracy, expanding on an earlier such treatment (6) . Qua- inductances into single terms (7) or neglect some inductance

contributions (8) , an effort has been made here to presentsistatic models possessing analytic solutions are used
throughout, because the formulas they produce are generally a consistent and complete treatment. Kirchoff ’s mesh equa-

tions transformed to the complex s plane give the system ofeasily understood and readily evaluated. Experiments with
coils of dimensions up to one-eighth of a free-space wave- coupled equations
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52 MARK C. LEIFER

lk Å
EH k

MH k

, [4]

where Ẽk and M̃k are the eigenvalues of the mutual induc-
tance and mutual capacitance matrices, or, equivalently, the
spatial transforms of the electric and magnetic couplings in
the coil. This formulation of the eigenvalue solution has two
advantages: first, Eq. [4] is general and applies to other
symmetric and periodic mesh structures [the dome (11) andFIG. 1. A section of the birdcage transmission line showing mesh cur-
free-element (12) resonators are two examples] by placingrents In . The line is periodic, that is, the left- and right-most ends are

connected together. appropriate entries in E and M , and second, it may be in-
verted to solve for either electric or magnetic coupling, as
shown in the next section.

For the birdcage structures under consideration here, the
spatial transform quantities evaluate tos 2 ∑

N01

mÅ0

In/mMm / 2InS 1
C1

/ 1
C2D

MH k Å ∑
N01

mÅ0

Mm exp(0i2pkm /N) [5]0 1
C2

(In/1 / In/N01) Å 0, [1]

andwhere n (and below, the indices k and m) take the integer
values zero to N 0 1 unless otherwise noted, and where all
indices are modulo N so that, for example, In/N Å In . There

EH k Å 02F 1
C1

/ 1
C2 S1 0 cos

2pk

N DG , [6]is an additional mode arising from equal currents flowing in
the same direction in each end ring, which cannot be con-
structed of any combination of currents shown in Fig. 1.
The mesh equations may be dispensed with in this case and

as shown in the Appendix, giving a practical form for thethe resonance frequency for this mode, called the co-rotating
resonant frequencies of the birdcage coil(CR) ring mode, written immediately as

vCR Å
√

N

C1(Lring / Mring )
, [2] vk Å

√
2

MH k
F 1

C1
/ 1

C2 S1 0 cos
2pk

N DG . [7]

where Lring is the self-inductance of each ring and Mring is
the mutual inductance between them. This mode differs from As is well known, the symmetry of E and M (MmÅMN0m)
the others in that it has no waves propagating around the results in the N /2 0 1 degenerate eigenvalue pairs which
coil meshes and does not produce a transverse magnetic permit practical quadrature operation (7) . The resonant fre-
field in the sample region. The position of this mode in the quencies are those at which a propagating wave has an inte-
resonance spectrum will be discussed below. gral number k of wavelengths around the structure, so k is

To find the other modes, Eq. [1] is put into the form of the index of spatial frequency in cycles per revolution, also
a generalized eigenvalue problem known as the wavenumber (13) . The expression in Eq. [7]

is therefore the discrete v vs k dispersion relation for waves
EI Å lMI , [3] traveling around the birdcage transmission line. It has been

appreciated since the birdcage’s invention that higher-order
where l Å s 2 , and the matrices E and M contain the electric modes correspond to patterns of higher spatial frequency
and magnetic coupling terms, respectively. Because these (1) , but it is worth noting that the correspondence is con-
matrices are circulant, reflecting the periodic nature of the tained explicitly in the formulas for the resonant frequencies.
birdcage structure, solutions have the form of discrete Fou- Where does the CR ring mode of Eq. [2] fit into the
rier transforms (DFTs). The formal solution to the eigen- resonance spectrum? Its close relative is the k Å 0 mode,
value problem is presented in the Appendix to make the which has equal and opposite ring currents and zero leg

currents, is also called the anti-rotational (AR) ring modepoint that the eigenvalues lk Å 0v 2
k of the birdcage coil are

given by the beautifully simple equation in this paper, and has resonant frequency
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53RESONANT MODES OF THE BIRDCAGE COIL

FIG. 2. The resonance spectrum measured from a 16-leg highpass coil. The modes are labeled, with AR and CR being the anti- and co-rotational
modes described in the text.

INVERTING THE MODE EQUATIONS
vAR Å v0 Å

√
N

C1(Lring 0 Mring )
[8]

The existence of dual transforms in Eq. [4 ] means that,
if the birdcage resonance frequencies are known, then ei-by analogy to Eq. [2] . The modes vCR and vAR form a
ther M or E may be found in terms of the other throughdoublet with vCR lower in frequency, except in the lowpass
application of the inverse discrete Fourier transform. Incoil where they are degenerate at zero frequency. Figure 2
most cases, the capacitance values are known but the in-shows the resonance spectrum of an N Å 16 highpass coil
ductance values are not, so we invert Eq. [5 ] to givelabeled to identify the AR/CR ring mode doublet, seven
the coupling values in terms of the measured resonancedegenerate mode pairs labeled by their lowest mode number
spectrum vk ,k Å 1 . . . 7, and k Å 8 singlet mode. In a lowpass spectrum,

the ring mode doublet becomes degenerate at zero frequency,
with higher-order modes increasing in frequency. Mm Å

1
N

∑
N01

kÅ0

MH kexp( i2pkm/N) , [9]
Earlier work on birdcage resonant frequencies includes an

extensive treatment of the highpass coil in which spatial
where M̃k is given for the bandpass coil byproperties are discussed and in which the DFT is mentioned

but in which the end-ring inductances are neglected (8) ,
and a brief treatment of the coupled lowpass (14) which,

MH k Å
2
v 2

k
F 1

C1
/ 1

C2 S1 0 cos
2pk

N DG . [10]however, reports a formula different from that derived here.
Several approximations considering only nearest-neighbor
couplings have appeared (7, 15, 16) , the latter including an
examination of the (approximate) dispersion relations. Fi- This is a new result with considerable practical impor-

tance—since frequency can be measured precisely, we cannally, a recent abstract treating the dome resonator presents
a form of the correct resonance formula, but with little elabo- now find the mesh self- and mutual inductances to an accu-

racy given by the capacitor tolerance.ration (11) .
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54 MARK C. LEIFER

In the next section, this inversion will be used to check N 0 1 much larger values in Eq. [9] , so its estimation error
degrades the accuracy of the derived inductance values inthe accuracy of birdcage inductance calculations, but first

we discuss some calculational details. Note that each M term only a small way, as noted earlier. These considerations
support the use of a linear predictor with, say, P Å 6 foris a sum over all measured mode frequencies, so that random

measurement errors tend to average away and an error in the 16-leg lowpass coil in the final section below where M̃0

is not known.any one value is spread out, making this a numerically robust
inversion. For bandpass and highpass coils, Eqs. [9] and As a point of interest, we mention a direct but ill-advised

method of determining M̃0 . Note that only M0 survives the[10] are evaluated just as written (either by explicit summa-
tion or with an FFT algorithm) and we may proceed to the sum on the right side of Eq. [5] for k Å N /2, allowing us
next section. The lowpass coil presents the problem of an to determine M (est )

0 from the measured value vN /2 through
indeterminate k Å 0 term in the summation, however, be- Eq. [10]. A rearrangement of Eq. [9] then gives the direct
cause 1/C1, [10 cos(0)] , and v0 are all zero. To understand formula
the physical reason for this, remember that direct current
flows in the end-rings in this mode; these currents, and the

MH 0 Å NM (est )
0 0 ∑

N01

kÅ1

MH k Å NMH N /2 0 ∑
N01

kÅ1

MH k , [11]overall mode inductance, are unaffected by any potential
between the rings and, therefore, by any DC energy stored
in the leg capacitors, so the mode has indeterminate electrical

where all terms on the right are derived from measurements.energy. The total mode inductance NM̃0 is still finite and
This method commits three numerical analysis sins, how-well behaved even though it cannot be measured directly in
ever; it derives M (est )

0 from a single measured datum, thenthe lowpass coil, so we expect to be able to estimate it
multiplies it by N which increases by a large factor anyaccurately since the frequency measurements are relatively
error in its value, and finally, forms the answer as the smallprecise. We make use of knowledge about the system in
difference between this big number and another big number.choosing an appropriate technique.
Even carefully collected data are unlikely to produce anThe most general model of this finite-length discrete linear
accurate estimate this way. By contrast, the linear predictionsystem is the ARMA (autoregressive-moving average)
technique finds M̃0 as the next in a sequence of similar-sizedmodel in the complex z plane consisting of a rational polyno-
values by using a smoothing process, producing a far bettermial function in z (10) , where the order (number of poles
estimate.and zeroes) must not exceed the order of the system N .

To summarize this section, analysis of the birdcage meshBecause of the difficulty of estimating the parameters of an
structure in terms of transforms permits us to find the MmARMA model, it is common practice to use an all-pole
values from the measured resonance frequencies by inverse(autoregressive or AR) model instead (10, 17) , and the pres-
transform, immediately in the case of bandpass and highpassent system is consistent with an all-pole model: the transform
coils. For the lowpass coil, the term M̃0 is ‘‘hidden’’ because(‘‘spectrum’’) given by Eq. [9] has no zeroes on the unit
there is no current flowing through the leg capacitors in thecircle, and it must have poles since M̃k is periodic for k
k Å 0 mode and, hence, no resonance with which to readranging from minus to plus infinity. We therefore use linear
out the value. This value is recovered with linear prediction,prediction, a robust AR estimator which generally gives
a technique suited to the smooth periodic nature of the datagood results for smooth oscillatory sequences, to estimate
sequence. The estimated value is then used in the inversionM̃0 from the N 0 1 other measured M̃ values; following this,
formula to find the lowpass inductance values.the inductance values Mm may be calculated from Eq. [9]

as they are for the band- and highpass coils.
CALCULATING BIRDCAGE INDUCTANCESIt remains to choose the estimator model order P . Linear

prediction algorithms are known to perform best with few
free parameters, the measured M̃k sequence has only N /2 Birdcage calculations can proceed at various levels of

sophistication, with the most accurate results coming fromindependent values, and we are predicting only the next
point in the sequence, so it makes sense to choose P less numerical solutions of Maxwell’s equations, typically using

finite-element or difference algorithms. It is the aim of thethan N /2. To verify this, a linear prediction algorithm (18)
was used to estimate M̃16 (which is identical to M̃0) from remaining sections to show that fairly simple models can

also give excellent results and offer the advantage of havingM̃1 . . . M̃15 measured for the 16-leg highpass coil whose
spectrum appears in Fig. 2 and which is described later. analytic expressions which make computation a relatively

straightforward matter. A related transmission-line approachM̃0 was also measured directly for comparison. The linear
prediction estimate is within 1.5% of the measured value of specific to eight-leg coils has appeared (6) , but it will be

seen that the following calculations are more general, apply21.7 nH for P between 3 and 8, with larger deviations for
P outside this range. Keep in mind that M̃0 is summed with to coils with RF shields, and give more accurate results.
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55RESONANT MODES OF THE BIRDCAGE COIL

Foil conductors on a cylindrical form of radius r0 are used (the different radii accomodate later shield calculations) .
The mutual inductance between adjacent ring segments isthroughout.

The inductance term Mm is the sum of mutual couplings approximated by that of two joined straight filaments of
length h Å 2r0sin(p /N) inclined at an angle f Å p 0 2p /between every nonorthogonal pair of conductors in the two

meshes m apart, N ,

Mm Å 2Mlegm 0 Mlegm01 0 Mlegm/1 Mincl

/ 2(Mrsm 0 Mrs *m) . [12]
Å 0 m0h cos f

p
tanh01F 1

1 /
√
2(1 0 cos f)

G . [15]

The simplest way to calculate the individual terms is to
use static handbook formulas for the contributions of each
conductor. Here Mlegm is the mutual inductance between For better accuracy in the dominant single mesh and near-
legs calculated by the appropriate formula below (with est-neighbor inductance terms, consider the strips to be a
Mleg0 being the self-inductance of a single leg) , Mrsm collection of infinitely many parallel filaments, all of which
[Mrs *m] is the mutual inductance between ring segments in contribute equally. This uniform current distribution
the same [opposite] ring[s] , and the signs are derived from throughout the conductor is a compromise between the sim-
the senses of the mesh currents in Fig. 1. plistic single-filament approximation and the true high-fre-

For all but leg couplings in a single and between nearest- quency distribution, and has the advantage of being mathe-
neighbor meshes, comparison to values derived with Eq. [9] matically tractable. The self-inductance of a ring or leg in
from coil observations shows that it is sufficient to replace a single mesh is then approximated by that of a flat thin
the leg and ring strips by equivalent filaments at their centers. strip
This approximation is partially motivated by the relative
insensitivity of inductance to details of the distribution of
the current supporting it—the field energy in the volume Lstrip Å m0h

2p S ln
2h

w
/ 1

2D , [16]
outside of the conductor contributes most to the inductance,
and only the small contributions from regions close to the
conductor are affected by the actual current distribution

where w is the width and h the length. For the mutual induc-
within—and is backed by solid experimental confirmation.

tance of two legs 2pn /N apart in either single or adjacent
The handbook formula giving the mutual inductance in hen-

meshes on a cylinder, integration of Eq. [13] over their width
ries between two legs (or more specifically, two parallel

du gives
filaments) of length h and separation s in meters is

Mfil(s) Mcyl Å du02 *
du

0
*

(2pn /N )/du

(2pn /N )

Å m0h

2p F lnS h

s
/

√
1/ S h

s D
2D0

√
1/ S s

hD
2

/ s

hG .
1 Mfil S2r0sin

u2 0 u1

2 Ddu2du1 , [17]

[13]

which includes curvature of the leg foil over its width. The
This and other formulas and methods discussed in this sec- argument of Mfil gives the distance between the filaments
tion are found in (19) . For coupling between noncontiguous being integrated. Finally, the mutual inductance between the
ring segments, Neumann’s formula gives (approximately) flat leg or ring strips of width w and their

parallel images will be needed for shield calculations,
Mrr Å m0r0r1

4p *
u

0
*

u=/u

u=
MparÅ w02 *

w

0
*

s/w

s1 cos(u2 0 u1)√
r 2

0 / r 2
1 0 2r0r1cos(u2 0 u1) / s 2

du2du1 ,
1Mfil(

√
(x20 x1) 2/ (r10 r0) 2)dx2dx1 . [18]

[14]
The preceeding double integrals give the same results as
would the comparable Neumann’s formulas having quadru-where the ring segments are w wide, u long, and separated

by (s , u *) , and where r1 Å r0 for the unshielded birdcage ple integrals, but evaluate in a fraction of the time.
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56 MARK C. LEIFER

TABLE 1
Calculated and Measured Inductance of Unshielded Coils

Mn (model) Mn (lpmeas) Mn (hpmeas)
n (nH) (nH) (nH)

0 122 117 115
1 038.1 036.4 034.9
2 06.1 05.3 05.3
3 02.3 02.3 02.3
4 01.4 01.4 01.3
5 01.0 00.9 00.8
6 00.8 00.9 00.8
7 00.8 00.7 00.8
8 00.7 00.8 00.8

indication that the frequency predictions will be accurate,
as well.

For comparison purposes, two birdcages of this size
were constructed of etched copper foil. A 300 pF 5%
tolerance microwave chip capacitor was placed at every
leg / ring junction (C2 Å 150 pF) of the first coil to form
a lowpass structure, while C1 Å 180 pF 2% chips in theFIG. 3. A two-mesh segment of the birdcage foil conductors, showing

how the strips are sized for the handbook-formula inductance calculations. endrings of the second formed a highpass coil. The reso-
nances were measured with a network analyzer and a
loosely coupled loop and are listed in Table 2. Inductance
terms for the highpass coil were evaluated directly fromNote that Eqs. [5] , [7] , and [8] give an equation for the
Eqs. [8 ] [ the measured value of 2(Lring 0 Mring ) is 347total inductance NM̃0 of the k Å 0 mode,
nH, close to the independently calculated checksum
value] , [9 ] , and [10] . For the lowpass coil, the linear
prediction method of the previous section with P Å 6 wasN ∑

N01

mÅ0

Mm Å 2(Lring 0 Mring ) . [19]
applied to the 15 measured values of Eq. [10] to give M̃ 0

Å 20.1 nH, which was then used in Eq. [9 ] with the
measured values. All of the transform data for low- andThis identity, which can also be verified (albeit tediously) by
highpass coils are plotted in Fig. 4 ( the largest descrep-explicit summation of Eq. [12], gives a convenient overall
ancy between them is 2.3% at k Å 8 which is well withinaccuracy check on the computations of Mm since exact ana-

lytic expressions are available for the right-hand side (20) .
A good match here lends confidence to the final frequency
predictions, making this a valuable gage for the computa- TABLE 2
tional design technique. Calculated and Measured Resonant Frequencies

of Unshielded Coils

COMPARISON TO MEASUREMENTS
f lp

n (model) f lp
n (meas.) f hp

n (model) f hp
n (meas.)

n (MHz) (MHz) (MHz) (MHz)
To illustrate the principles outlined so far, consider a

0 0 0 116 11416-leg birdcage 8.9 cm diameter by 12.8 cm long with 1
CR 0 0 113 112cm wide end-rings and 0.635 cm wide legs. Figure 3
1 23.7 24.1 78.3 79.1shows how the strips were sized for the handbook formula
2 36.5 37.4 61.5 63.2

calculations of Eqs. [13 ] – [17 ] , which give M0 Å 122 3 44.7 45.9 51.9 53.5
nH and other values as shown in the first column of Table 4 50.5 51.9 46.1 47.7

5 54.6 56.1 42.4 44.01 (only the first N /2 / 1 values are listed since MN0m Å
6 57.5 58.8 40.2 41.6Mm ) . The values of Mm calculated by these methods give
7 59.2 60.4 39.0 40.3a checksum in Eq. [19] of 334 nH which is within 1.5%
8 59.7 61.0 38.6 39.9

of the independently calculated value of 338 nH, a good
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57RESONANT MODES OF THE BIRDCAGE COIL

FIG. 4. Plot of the mutual inductance transform vector M̃ as a function of mode or wavenumber. Values are measured from 16-leg highpass (circles)
and lowpass (diamonds) coils, with the lowpass M̃0 value estimated by linear prediction as described in the text.

the combined capacitor tolerance) , and the M values de- overestimated by the handbook formulas, and by enough that
the errors largely cancel in the summations for the resonancerived from them are listed in Table 1.

The observed M0 values of 117 and 115 nH for this coil frequencies. Indeed, experience shows that this overestima-
tion and error cancellation is stable for coils of many sizesmatch the calculated handbook value of 122 nH to 4–6%,

the deviation being somewhat larger than that expected from and aspect ratios, leading to consistently excellent frequency
estimates as shown below.the capacitor tolerance. It is clear from the table that the

nearest-neighbor value (which has opposite sign) is also The lowpass calculated (diamond) and measured (cir-

FIG. 5. A plot of the self- (M0) and mutual-inductance values for the lowpass coil as a function of mesh separation. Diamonds give calculated
values, while circles and solid line show measured values. This sequence and that of Fig. 4 form a discrete Fourier transform pair.

AID JMRB 7488 / 6o14h$$204 12-16-96 21:06:24 magbas AP: Mag Res, Series B



58 MARK C. LEIFER

cles and solid line ) values of the M vector plotted in Fig. Despite these conceptual uncertainties, a calculation
including mutual coupling to image currents was applied5 show the expected symmetry and close agreement of

observed and computed values. The coupling quickly be- to the coils of this paper. A shield of radius rs is approxi-
mated in the vicinity of each conductor as an infinitecomes small beyond the nearest-neighbors, leading to the

common practice of including only nearest-neighbor cou- conductive plane, a more reasonable assumption than that
of a cylinder for reasons just mentioned, giving an imagepling in approximate calculations. Still, improved accu-

racy results from inclusion of all terms, as has been noted located an equal distance behind the plane at a radius r1

Å 2rs 0 ro . Ring segments are assumed to have imagesearlier (14, 16 ) .
Finally, the self- and mutual-inductance values calcu- of the same angular extent. Values of M and M̃ in expres-

sions throughout this paper now become effective valueslated from the coil geometry and listed in Table 1 are
used with Eqs. [5 ] – [7] to predict the birdcage resonant which have been reduced by coupling to the image cur-

rents. Calculations follow the unshielded ones outlinedfrequencies, which are given in Table 2 together with
spectra measured from the actual coils. The frequency of in the previous section, with each term in Eq. [12 ] modi-

fied by a correction representing the mutual inductancethe CR mode calculated from Eq. [2] is also presented.
The predicted frequencies for the k Å 1 homogeneous- between the corresponding image currents. Specifically,

self-inductance of the single-mesh elements is reducedfield mode most useful for NMR are within 1.7 and 1.0%
of the observed lowpass and highpass values. Experience by mutual coupling of a leg or ring segment to its own

image, calculated with Eq. [18 ] as that between parallelwith numerous other coils shows accuracy to consistently
be within about one-half of the capacitor tolerance. Obvi- flat strips. Mutual inductances between leg images are

computed as between parallel filaments using Eq. [13 ] ,ously, this is a useful aid for choosing capacitor values to
resonate a given coil geometry to a desired frequency, or and between ring images using Eq. [14 ] , except for the

images of contiguous ring segments which are calculatedin choosing coil dimensions to resonate there with avail-
able capacitors. at r1 with Eq. [15] . These calculations applied to the 13.3

cm diameter shield surrounding the low- and highpass
coils correctly predict the k Å 1 observed frequencies ofSHIELDED COILS
27.7 and 89.9 MHz to within 1.4 and 0.7%, respectively.
The M0 and M1 terms are still overestimated comparedA practical discussion of birdcage coils is not complete

without mentioning the effects of an RF foil shield sur- to highpass measurements obtained with Eq. [9 ] , so the
accuracy of the frequency estimate is aided, again, byrounding the coil. Such shields increase resonance frequen-

cies and decrease both field strength and homogeneity, but offsetting errors. As was found for the bare coils, this
error cancellation is consistent for the shielded coils andare widely used to reduce interactions between coil and envi-

ronment. Their analysis lies at the limits of validity of simple does not diminish the usefulness of the technique.
To further show the practical value of the model calcula-models with analytic solutions, however. The common sug-

gestion of accounting for shield effects by including mutual tions, and to demonstrate that they retain their validity at
high frequencies, predicted k Å 1 mode frequencies werecoupling to image currents is problematic, since simple im-

ages assume conducting sheets of infinite extent. In an early compared to observed values for a variety of shielded bird-
cage coils operating at 200 MHz. The frequency predictedsuch study, inductances for a doubly resonant highpass coil

calculated with Neumann’s formula for both legs and leg for an 8.9/13.3 cm (winding/shield diameter) 8-leg lowpass
coil agreed with experiment to within 1.6%, those forimages (rings were neglected) gave resonant frequencies

which matched observations only to within about 15% (8) . 7/12.1 and 11.4/15.2 cm 16-leg lowpass coils were both
within 1.3% and, finally, those for 16.5/21 cm 8-leg lowpassImage locations were found by considering infinite line cur-

rents flowing parallel to an infinitely long cylindrical con- and bandpass coils with precision capacitors were predicted
to 0.4 and 0.6%. Despite the theoretical uncertainty behindducting shield, which is a poor approximation for finite legs

whose length is approximately equal to the shield diameter, this simple treatment of the shield, it gives consistently good
results for a variety of sizes and styles at both low and highand is certainly wrong for short ring segments transverse to

the cylinder axis. Furthermore, experimental evidence shows frequencies.
In conclusion, this paper has shown how simple modelsthat other effects are also important. For instance, electric

coupling between parts of the birdcage to the shield is ig- can describe birdcage coil behavior with analytic equa-
tions which are straightforward to understand and evalu-nored in the simple models presented here, and the CR mode

of the 16-leg highpass coil considered above is so severely ate. The formula for the frequencies of the resonant modes
explicitly shows the link to the spatial frequencies of elec-disturbed by the presence of a shield 13.3 cm in diameter

and 18.7 cm long that its resonance in Fig. 2 completely tric and magnetic coupling in the coil, with applicability
to other periodic mesh structures, and its inverse allowsdisappears.
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the inductance coupling values to be found from measured AI Å lI whose matrix A Å (M01E) is still circulant (21) .
Since all circulant matrices have the same eigenvectors Wk ,frequencies. Of perhaps greatest practical value are the

simple methods and equations which predict resonant fre- I k Å i0Wk follows directly.
The vector M̃ of eigenvalues M̃k of the circulant matrixquencies from the chosen geometry and dimensions with-

out the need to construct or test any mockups; these are M is given by the DFT expression
shown to agree to a high degree of accuracy with measure-
ments on both bare and shielded coils at usefully high MH Å (Wk)TM , [A4]
frequencies.

where T denotes transpose and M is the column vector of
APPENDIX elements Mm (10) . Since any matrix may be expanded in a

similarity transformation in terms of its eigenvalues and
The formal solution to the birdcage mesh problem is out- -vectors, M in Eq. [3] can be factored as

lined briefly below to show that the eigenvalues and coupling
terms are expressed naturally in terms of the DFT. The mesh M Å ImIH, [A5]
equations are written as the generalized eigenvalue problem
of Eq. [3] with

where the columns of I are the eigenvectors I k , H denotes
the hermitian conjugate, and m is a diagonal matrix of the
eigenvalues M̃k . If E is similarly factored in terms of the
diagonal matrix of its eigenvalues Ẽk , then the system eigen-

M Å

M0 M1 r r MN01

MN01 M0 r r MN02

r r r

r r r

M1 M2 r r M0

, I Å

I0

I1

r

r

r

IN01

, values lk of Eq. [3] reduce with standard matrix manipula-
tions to the ratio of matrix eigenvalues Ẽk /M̃k . This is the
formal solution to the problem and is completely general for
any structure having matrices E and M which are circulant.

[A1] A specific expression for the bandpass coil (containing

and

E Å

02S 1
C1

/ 1
C2D 1

C2
0 r

1
C2

1
C2

02S 1
C1

/ 1
C2D 1

C2
r 0

r r r

1
C2

0 r

1
C2

02S 1
C1

/ 1
C2D

. [A2]

As pointed out in the text, the matrices M and E are circulant the low- and highpass coils as special cases) is readily found.
M̃k is expanded as Eq. [5] and the transform for Ẽk with theand therefore possess special eigenvalue properties. The k th

eigenvector of any circulant matrix M is equal (within a values of Eq. [A2] reduces to Eq. [6] for integer k , giving
the final expression in Eq. [7] .constant) to the k th vector Wk of complex coefficients of

the N-point DFT (10) , the mth row or element of which is
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