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This paper presents a small and complete set of analytic equa-
tions which can be used to design a birdcage coil and predict its
resonant modes a priori before construction begins. The simple
models used include full mutual coupling between all meshes and
give the resonant spectrum for both unshielded and shielded coils.
The equations are valid, in compact form, for lowpass, highpass,
bandpass, and more general birdcage structures. The resonant-
mode frequencies are shown to depend on the spatial discrete
Fourier transforms of the vectors of electric and magnetic coupling
around the coil, making obvious the connection between the reso-
nant and the spatial frequencies of each mode. Inversion of the
equations provides values of all of the mesh inductances and cou-
plings from the measured resonance frequencies following coil con-
struction, a result of considerable practical importance. Experi-
mental results are presented which show that these methods regu-
larly predict operating frequencies to a high degree of accuracy
for both unshielded and shielded coils.  © 1997 Academic Press

INTRODUCTION

Since its introduction over a decade ago, the birdcage cail
has become amainstay of NMR imaging and, to some extent,
spectroscopy, due to its highly homogeneous transverse RF
magnetic field and the ease with which it may be operated
in quadrature to produce circularly polarized fields (1).
Throughout this period, the practical goal of predicting bird-
cage operating frequencies has remained difficult. On the
one hand, empirical approaches are widely used, aided by
design guides (2) and measurements on portions of coils
(3), while, on the other hand, there are three-dimensional
numerical simulations capable of also accounting for electric
fields, loading, and other effects (4, 5), but which require
sophisticated codes (and users), powerful computers, and
sometimes, significant interpretive skills. The approach of
this paper lies between these by presenting smple and practi-
cal approximate cal culations which produce results of useful
accuracy, expanding on an earlier such treatment (6). Qua
sistatic models possessing analytic solutions are used
throughout, because the formulas they produce are generally
easily understood and readily evaluated. Experiments with
coils of dimensions up to one-eighth of a free-space wave-

length show that the model calculations can usefully predict
birdcage performance, can aid in choosing dimensions and
capacitor values before construction begins, and can mini-
mize or eliminate the iterative tuning/rebuilding which has
often accompanied practical birdcage construction.

To this end, a solution for the resonant modes of the
birdcage using the mesh eigenvalue approach of Tropp (7)
and Joseph and Lu (8) is presented which makes clear the
dual transform nature of the solution. Although portions of
thistreatment have appeared el sewhere, the presentation here
is rigorous, and the results are of wider scope than previous
treatments and motivate new results. The inversion proce-
dure of the second section is one such new result and shows
how all the inductance values can be derived from the reso-
nant frequencies measured for a birdcage coil. Thisresult is
used to check the accuracy of the inductance calculations
presented in the third section, which, for the practical-
minded reader interested in predicting coil behavior, contains
perhaps the most important new information. There, analytic
eguations for carefully chosen approximate models are pre-
sented and used to describe the coil. The last section shows
that the predictions agree closely with observations from
actual coils, in some cases to within a fraction of a percent.
A preliminary report of thiswork as applied to lowpass coils
has appeared separately (9).

RESONANT AND SPATIAL MODES
OF THE COUPLED BIRDCAGE

Consider a symmetric N-leg ‘‘bandpass’’ birdcage con-
taining capacitors in both its endrings and legs, a portion of
whichisshownin Fig. 1. This structure includes the lowpass
and highpass coils as special cases when 1/C1 or 1/C2 is
set to zero. We label the inductance of a single mesh L e,
note that the flux coupling M,, between any two meshes
depends only on their separation m, and define My = Les, fOr
convenience. Where earlier treatments sum self- and mutual
inductances into single terms (7) or neglect some inductance
contributions (8), an effort has been made here to present
a consistent and compl ete treatment. Kirchoff ’s mesh equa-
tions transformed to the complex s plane give the system of
coupled equations
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FIG. 1. A section of the birdcage transmission line showing mesh cur-
rents |,. The line is periodic, that is, the left- and right-most ends are
connected together.

N-1
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- & (Ins1 + lhen-1) = 0, [1]

where n (and below, the indices k and m) take the integer
values zero to N — 1 unless otherwise noted, and where all
indices are modulo N so that, for example, |,y = |,. There
is an additional mode arising from equal currents flowing in
the same direction in each end ring, which cannot be con-
structed of any combination of currents shown in Fig. 1.
The mesh equations may be dispensed with in this case and
the resonance frequency for this mode, called the co-rotating
(CR) ring mode, written immediately as

N
= y 2
WceRr \/Cl(Lring + Mring) 2

where L,y is the self-inductance of each ring and My, iS
the mutual inductance between them. This mode differs from
the others in that it has no waves propagating around the
coil meshes and does not produce a transverse magnetic
field in the sample region. The position of this mode in the
resonance spectrum will be discussed below.

To find the other modes, Eq. [1] is put into the form of
a generalized eigenvalue problem

El = \MI, [3]

where \ = s?, and the matrices E and M contain the electric
and magnetic coupling terms, respectively. Because these
matrices are circulant, reflecting the periodic nature of the
birdcage structure, solutions have the form of discrete Fou-
rier transforms (DFTs). The formal solution to the eigen-
value problem is presented in the Appendix to make the
point that the eigenvalues \, = — w? of the birdcage coil are
given by the beautifully simple equation

)\k = [4]

| me

where E, and M, are the eigenvalues of the mutual induc-
tance and mutual capacitance matrices, or, equivalently, the
gpatial transforms of the electric and magnetic couplings in
the coil. This formulation of the eigenvalue solution has two
advantages: first, Eq. [4] is genera and applies to other
symmetric and periodic mesh structures [ the dome (11) and
free-element (12) resonators are two examples] by placing
appropriate entries in E and M, and second, it may be in-
verted to solve for either electric or magnetic coupling, as
shown in the next section.

For the birdcage structures under consideration here, the
spatial transform quantities evaluate to

N-1
M= Y M, exp(—i2rkm/N) [5]
m=0

and

[6]

Ek:—z i.}.i 1_COSE( ,
Cl ¢C2 N

as shown in the Appendix, giving a practical form for the
resonant frequencies of the birdcage coil

211 1 2rk
wk= |5 | =+=(1- cos— .
Mc|[Cl1 C2 N

Asiswell known, the symmetry of E and M (M, = My_m)
results in the N/2 — 1 degenerate eigenvalue pairs which
permit practical quadrature operation (7). The resonant fre-
guencies are those at which a propagating wave has an inte-
gral number k of wavelengths around the structure, so k is
the index of spatial frequency in cycles per revolution, also
known as the wavenumber (13). The expression in Eq. [ 7]
is therefore the discrete w vs k dispersion relation for waves
traveling around the birdcage transmission line. It has been
appreciated since the birdcage' s invention that higher-order
modes correspond to patterns of higher spatial frequency
(1), but it is worth noting that the correspondence is con-
tained explicitly in the formulas for the resonant frequencies.

Where does the CR ring mode of Eq. [2] fit into the
resonance spectrum? Its close relative is the k = 0 mode,
which has equal and opposite ring currents and zero leg
currents, is also called the anti-rotational (AR) ring mode
in this paper, and has resonant frequency

[7]
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FIG. 2.
modes described in the text.

N
= = 8
AR wo \/Cl(l—ring - Mring) [ ]

by analogy to Eq. [2]. The modes wer and war form a
doublet with wcr lower in frequency, except in the lowpass
coil where they are degenerate at zero frequency. Figure 2
shows the resonance spectrum of an N = 16 highpass coil
labeled to identify the AR/CR ring mode doublet, seven
degenerate mode pairs labeled by their lowest mode number
k=1.. .7 andk = 8singlet mode. In alowpass spectrum,
the ring mode doubl et becomes degenerate at zero frequency,
with higher-order modes increasing in frequency.

Earlier work on birdcage resonant frequencies includes an
extensive treatment of the highpass coil in which spatial
properties are discussed and in which the DFT is mentioned
but in which the end-ring inductances are neglected (8),
and a brief treatment of the coupled lowpass (14) which,
however, reports a formula different from that derived here.
Several approximations considering only nearest-neighbor
couplings have appeared (7, 15, 16), the latter including an
examination of the (approximate) dispersion relations. Fi-
nally, a recent abstract treating the dome resonator presents
aform of the correct resonance formula, but with little elabo-
ration (11).

The resonance spectrum measured from a 16-leg highpass coil. The modes are labeled, with AR and CR being the anti- and co-rotational

INVERTING THE MODE EQUATIONS

The existence of dual transformsin Eq. [4] means that,
if the birdcage resonance frequencies are known, then ei-
ther M or E may be found in terms of the other through
application of the inverse discrete Fourier transform. In
most cases, the capacitance values are known but the in-
ductance values are not, so we invert Eq. [5] to give
the coupling values in terms of the measured resonance
spectrum w,,

N

1
My exp(i2rkm/N) ,

0

Mn,

[9]

Zlr

k

where My is given for the bandpass coil by

)]

This is a new result with considerable practical impor-
tance—since frequency can be measured precisely, we can
now find the mesh self- and mutual inductances to an accu-
racy given by the capacitor tolerance.

.21 1
Mc== | —=+—= 10
X wﬁ[m C2 [10]
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In the next section, this inversion will be used to check
the accuracy of birdcage inductance calculations, but first
we discuss some calculational details. Note that each M term
isasum over all measured mode frequencies, so that random
measurement errors tend to average away and an error in
any onevalueis spread out, making thisanumerically robust
inversion. For bandpass and highpass coils, Egs. [9] and
[10] are evaluated just as written (either by explicit summa-
tion or with an FFT algorithm) and we may proceed to the
next section. The lowpass coil presents the problem of an
indeterminate k = O term in the summation, however, be-
cause1l/C1,[1 - cos(0)], and wqaredl zero. To understand
the physical reason for this, remember that direct current
flows in the end-rings in this mode; these currents, and the
overall mode inductance, are unaffected by any potential
between the rings and, therefore, by any DC energy stored
in the leg capacitors, so the mode has indeterminate electrical
energy. The total mode inductance NM, is still finite and
well behaved even though it cannot be measured directly in
the lowpass coil, so we expect to be able to estimate it
accurately since the frequency measurements are relatively
precise. We make use of knowledge about the system in
choosing an appropriate technique.

The most general model of thisfinite-length discrete linear
system is the ARMA (autoregressive-moving average)
model in the complex z plane consisting of arational polyno-
mial function in z (10), where the order (number of poles
and zeroes) must not exceed the order of the system N.
Because of the difficulty of estimating the parameters of an
ARMA model, it is common practice to use an al-pole
(autoregressive or AR) model instead (10, 17), and the pres-
ent system is consistent with an all-pole model: the transform
(**spectrum’”) given by Eq. [9] has no zeroes on the unit
circle, and it must have poles since M is periodic for k
ranging from minus to plus infinity. We therefore use linear
prediction, a robust AR estimator which generaly gives
good results for smooth oscillatory sequences, to estimate
M, from the N — 1 other measured M values; followi ng this,
the inductance values M,, may be calculated from Eq. [9]
as they are for the band- and highpass cails.

It remains to choose the estimator model order P. Linear
prediction agorithms are known to perform best with few
free parameters, the measured My sequence has only N/2
independent values, and we are predicting only the next
point in the sequence, so it makes sense to choose P less
than N/2. To verify this, a linear prediction algorithm (18)
was used to estimate M, (which is identical to M) from
M, . . . Mys measured for the 16-leg highpass coil whose
spectrum appears in Fig. 2 and which is described later.
M, was also measured directly for comparison. The linear
prediction estimate is within 1.5% of the measured value of
21.7 nH for P between 3 and 8, with larger deviations for
P outside this range. Keep in mind that M, is summed with

N — 1 much larger valuesin Eq. [ 9], so its estimation error
degrades the accuracy of the derived inductance values in
only a small way, as noted earlier. These considerations
support the use of a linear predictor with, say, P = 6 for
the 16-leg lowpass cail in the fina section below where M,
is not known.

As apoint of interest, we mention a direct but ill-advised
method of determining M,. Note that only M, survives the
sum on the right side of Eq. [5] for k = N/2, allowing us
to determine M$ from the measured value wy,, through
Eq. [10]. A rearrangement of Eq. [9] then gives the direct
formula

N-1 N-1
Mo = NMED — 5 Mc=NMy, — 5 My, [11]
k=1 k=1

where all terms on the right are derived from measurements.
This method commits three numerical analysis sins, how-
ever; it derives M from a single measured datum, then
multiplies it by N which increases by a large factor any
error in its value, and finally, forms the answer as the small
difference between this big number and another big number.
Even carefully collected data are unlikely to produce an
accurate estimate this way. By contrast, the linear prediction
technique finds My as the next in a sequence of similar-sized
values by using a smoothing process, producing a far better
estimate.

To summarize this section, analysis of the birdcage mesh
structure in terms of transforms permits us to find the M,
values from the measured resonance frequencies by inverse
transform, immediately in the case of bandpass and highpass
coils. For the lowpass cail, the term Mg is‘‘hidden’’ because
there is no current flowing through the leg capacitorsin the
k = 0 mode and, hence, no resonance with which to read
out the value. This value is recovered with linear prediction,
a technique suited to the smooth periodic nature of the data
sequence. The estimated value is then used in the inversion
formula to find the lowpass inductance values.

CALCULATING BIRDCAGE INDUCTANCES

Birdcage calculations can proceed at various levels of
sophistication, with the most accurate results coming from
numerical solutions of Maxwell’s equations, typically using
finite-element or difference algorithms. It is the aim of the
remaining sections to show that fairly simple models can
also give excellent results and offer the advantage of having
analytic expressions which make computation a relatively
straightforward matter. A related transmission-line approach
specific to eight-leg coils has appeared (6), but it will be
seen that the following calculations are more general, apply
to coils with RF shields, and give more accurate results.
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Foil conductors on a cylindrical form of radius r, are used
throughout.

The inductance term M,,, is the sum of mutual couplings
between every nonorthogonal pair of conductors in the two
meshes m apart,

My = 2Mleg, — Mleg,_1 — Mlegn 1

+ 2(Mrs, — Mrs/,). [12]
The smplest way to calculate the individual terms is to
use static handbook formulas for the contributions of each
conductor. Here Mleg,, is the mutual inductance between
legs calculated by the appropriate formula below (with
Mleg, being the self-inductance of a single leg), Mrs,
[Mrs/] is the mutual inductance between ring segments in
the same [ opposite] ring[s], and the signs are derived from
the senses of the mesh currents in Fig. 1.

For all but leg couplings in a single and between nearest-
neighbor meshes, comparison to values derived with Eq. [ 9]
from coil observations shows that it is sufficient to replace
the leg and ring strips by equivalent filaments at their centers.
This approximation is partially motivated by the relative
insensitivity of inductance to details of the distribution of
the current supporting it—the field energy in the volume
outside of the conductor contributes most to the inductance,
and only the small contributions from regions close to the
conductor are affected by the actual current distribution
within—and is backed by solid experimental confirmation.
The handbook formula giving the mutual inductance in hen-
ries between two legs (or more specifically, two parallel
filaments) of length h and separation s in meters is

2oz o) 1)

[13]

This and other formulas and methods discussed in this sec-
tion are found in (19). For coupling between noncontiguous
ring segments, Neumann’s formula gives

0 0’ +6
I'ol
Mrr = Mf f
47T 0 9’

cos(6, — 6,)
Vr2 + 12— 2ror,cos(f, — 61) + S2

X dg,dé,,
[14]

where the ring segments are w wide, 6 long, and separated
by (s, #'), and where r; = r, for the unshielded birdcage

(the different radii accomodate later shield calculations).
The mutual inductance between adjacent ring segments is
approximated by that of two joined straight filaments of
length h = 2rysin(«w/N) inclined at an angle ¢ = © — 2x/
N,

Mincl

_ _mhcosé tanh‘l[ 1 ] . [15]
™ 1+ v2(1 — cos¢)

For better accuracy in the dominant single mesh and near-
est-neighbor inductance terms, consider the strips to be a
collection of infinitely many paralld filaments, al of which
contribute equally. This uniform current distribution
throughout the conductor is a compromise between the sim-
plistic single-filament approximation and the true high-fre-
guency distribution, and has the advantage of being mathe-
matically tractable. The self-inductance of aring or leg in
a single mesh is then approximated by that of a flat thin
strip

Lstringih<ln@+£> , [16]

T w 2

where w is the width and h the length. For the mutual induc-
tance of two legs 2rn/N apart in either single or adjacent
meshes on acylinder, integration of Eq. [13] over their width
60 gives

59 M(2rn/N)+60
Mcyl = 66 *zf f
o v (@2mm)

X Mfil <2rosin‘92 ; b1

>d92d01, [17]

which includes curvature of the leg foil over its width. The
argument of Mfil gives the distance between the filaments
being integrated. Finally, the mutual inductance between the
(approximately) flat leg or ring strips of width w and their
paralel images will be needed for shield calculations,

W S+w
Mpar = w2 f f
0 s

X Ml (V(Xo — X0)2 + (1 — I'0)2) dX,0Xy.

(18]

The preceeding double integrals give the same results as
would the comparable Neumann’s formulas having quadru-
ple integrals, but evaluate in a fraction of the time.
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FIG. 3. A two-mesh segment of the birdcage foil conductors, showing
how the strips are sized for the handbook-formula inductance calculations.

Note that Egs. [5], [7], and [8] give an equation for the
total inductance NM,, of the k = 0 mode,

N-1

N z Mm = 2(Lring - Mring)- [19]
m=0

Thisidentity, which can also be verified (albeit tediously) by
explicit summation of Eq. [12], gives a convenient overall
accuracy check on the computations of M,, since exact ana-
lytic expressions are available for the right-hand side (20).
A good match here lends confidence to the final frequency
predictions, making this a valuable gage for the computa-
tional design technique.

COMPARISON TO MEASUREMENTS

To illustrate the principles outlined so far, consider a
16-leg birdcage 8.9 cm diameter by 12.8 cm long with 1
cm wide end-rings and 0.635 cm wide legs. Figure 3
shows how the strips were sized for the handbook formula
calculations of Eqgs. [13] —[17], which give My = 122
nH and other values as shown in the first column of Table
1 (only the first N/2 + 1 values are listed since My_, =
M..). The values of M, calculated by these methods give
a checksum in Eq. [19] of 334 nH which is within 1.5%
of the independently calculated value of 338 nH, a good

TABLE 1
Calculated and Measured Inductance of Unshielded Coils
M, (model) M, (Ipmeas) M, (hpmeas)

n (nH) (nH) (nH)
0 122 117 115
1 -38.1 —-36.4 —34.9
2 —-6.1 -53 -53
3 -2.3 -23 -2.3
4 -1.4 -14 -1.3
5 -1.0 -09 -0.8
6 -0.8 -0.9 -0.8
7 -0.8 -0.7 -0.8
8 -0.7 -0.8 -0.8

indication that the frequency predictions will be accurate,
as well.

For comparison purposes, two birdcages of this size
were constructed of etched copper foil. A 300 pF 5%
tolerance microwave chip capacitor was placed at every
leg/ring junction (C2 = 150 pF) of the first coil to form
a lowpass structure, while C1 = 180 pF 2% chips in the
endrings of the second formed a highpass coil. The reso-
nances were measured with a network analyzer and a
loosely coupled loop and are listed in Table 2. Inductance
terms for the highpass coil were evaluated directly from
Egs. [8] [the measured value of 2(Ling — Mying) is 347
nH, close to the independently calculated checksum
value], [9], and [10]. For the lowpass cail, the linear
prediction method of the previous section with P = 6 was
applied to the 15 measured values of Eq. [10] to give M,
= 20.1 nH, which was then used in Eq. [9] with the
measured values. All of the transform data for low- and
highpass coils are plotted in Fig. 4 (the largest descrep-
ancy between them is 2.3% at k = 8 which is well within

TABLE 2

Calculated and Measured Resonant Frequencies
of Unshielded Coils

fIP (model) fIP (meas.) P (model) f® (meas.)

n (MH2) (MHz2) (MH2) (MH2)
0 0 0 116 114
CR 0 0 113 112
1 23.7 24.1 78.3 79.1
2 36.5 374 61.5 63.2
3 44.7 459 51.9 535
4 50.5 51.9 46.1 47.7
5 54.6 56.1 424 44.0
6 57.5 58.8 40.2 41.6
7 59.2 60.4 39.0 40.3
8 59.7 61.0 38.6 39.9
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FIG. 4. Plot of the mutual inductance transform vector M as afunction of mode or wavenumber. Values are measured from 16-leg highpass (circles)
and lowpass (diamonds) coils, with the lowpass M, value estimated by linear prediction as described in the text.

the combined capacitor tolerance), and the M values de-
rived from them are listed in Table 1.

The observed M, values of 117 and 115 nH for this cail
match the calculated handbook value of 122 nH to 4—6%,
the deviation being somewhat larger than that expected from
the capacitor tolerance. It is clear from the table that the
nearest-neighbor value (which has opposite sign) is aso

overestimated by the handbook formulas, and by enough that
the errorslargely cancel in the summations for the resonance
frequencies. Indeed, experience shows that this overestima
tion and error cancellation is stable for coils of many sizes
and aspect ratios, leading to consistently excellent frequency
estimates as shown below.

The lowpass calculated (diamond) and measured (cir-

150 |

100

50

Inductance M (nH)

10 15

Mesh Separation

FIG. 5. A plot of the self- (M,) and mutual-inductance values for the lowpass coil as a function of mesh separation. Diamonds give calculated
values, while circles and solid line show measured values. This sequence and that of Fig. 4 form a discrete Fourier transform pair.
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cles and solid line) values of the M vector plotted in Fig.
5 show the expected symmetry and close agreement of
observed and computed values. The coupling quickly be-
comes small beyond the nearest-neighbors, leading to the
common practice of including only nearest-neighbor cou-
pling in approximate calculations. Still, improved accu-
racy results from inclusion of all terms, as has been noted
earlier (14, 16).

Finally, the self- and mutual-inductance values calcu-
lated from the coil geometry and listed in Table 1 are
used with Egs. [5] —[ 7] to predict the birdcage resonant
frequencies, which are given in Table 2 together with
spectra measured from the actual coils. The frequency of
the CR mode calculated from Eq. [2] is also presented.
The predicted frequencies for the k = 1 homogeneous-
field mode most useful for NMR are within 1.7 and 1.0%
of the observed lowpass and highpass values. Experience
with numerous other coils shows accuracy to consistently
be within about one-half of the capacitor tolerance. Obvi-
ously, thisisauseful aid for choosing capacitor values to
resonate a given coil geometry to a desired frequency, or
in choosing coil dimensions to resonate there with avail-
able capacitors.

SHIELDED COILS

A practical discussion of birdcage coils is not complete
without mentioning the effects of an RF foil shield sur-
rounding the coil. Such shields increase resonance frequen-
cies and decrease both field strength and homogeneity, but
arewidely used to reduce interactions between coil and envi-
ronment. Their analysislies at the limits of validity of simple
models with analytic solutions, however. The common sug-
gestion of accounting for shield effects by including mutual
coupling to image currents is problematic, since simple im-
ages assume conducting sheets of infinite extent. In an early
such study, inductances for a doubly resonant highpass cail
calculated with Neumann’'s formula for both legs and leg
images (rings were neglected) gave resonant frequencies
which matched observations only to within about 15% (8).
Image locations were found by considering infinite line cur-
rents flowing paralel to an infinitely long cylindrical con-
ducting shield, which is a poor approximation for finite legs
whose length is approximately equal to the shield diameter,
and is certainly wrong for short ring segments transverse to
the cylinder axis. Furthermore, experimental evidence shows
that other effects are also important. For instance, electric
coupling between parts of the birdcage to the shield is ig-
nored in the simple model s presented here, and the CR mode
of the 16-leg highpass coil considered above is so severely
disturbed by the presence of a shield 13.3 cm in diameter
and 18.7 cm long that its resonance in Fig. 2 completely

disappears.

Despite these conceptual uncertainties, a calculation
including mutual coupling to image currents was applied
to the coils of this paper. A shield of radiusr,is approxi-
mated in the vicinity of each conductor as an infinite
conductive plane, a more reasonabl e assumption than that
of a cylinder for reasons just mentioned, giving an image
located an equal distance behind the plane at a radius r;
= 2rs — r,. Ring segments are assumed to have images
of the same angular extent. Values of M and M in expres-
sions throughout this paper now become effective values
which have been reduced by coupling to the image cur-
rents. Calculations follow the unshielded ones outlined
in the previous section, with each term in Eq. [12] modi-
fied by a correction representing the mutual inductance
between the corresponding image currents. Specifically,
self-inductance of the single-mesh elements is reduced
by mutual coupling of aleg or ring segment to its own
image, calculated with Eq. [18] as that between parallel
flat strips. Mutual inductances between leg images are
computed as between parallel filaments using Eq. [13],
and between ring images using Eq. [14], except for the
images of contiguous ring segments which are cal culated
at r, with Eq. [15] . These calculations applied to the 13.3
cm diameter shield surrounding the low- and highpass
coils correctly predict the k = 1 observed frequencies of
27.7 and 89.9 MHz to within 1.4 and 0.7%, respectively.
The My and M; terms are still overestimated compared
to highpass measurements obtained with Eq. [ 9], so the
accuracy of the frequency estimate is aided, again, by
offsetting errors. As was found for the bare coils, this
error cancellation is consistent for the shielded coils and
does not diminish the usefulness of the technique.

To further show the practical value of the model calcula-
tions, and to demonstrate that they retain their validity at
high frequencies, predicted k = 1 mode frequencies were
compared to observed values for a variety of shielded bird-
cage coils operating at 200 MHz. The frequency predicted
for an 8.9/13.3 cm (winding/shield diameter) 8-leg lowpass
coil agreed with experiment to within 1.6%, those for
7/12.1 and 11.4/15.2 cm 16-leg lowpass coils were both
within 1.3% and, finally, those for 16.5/21 cm 8-leg lowpass
and bandpass coils with precision capacitors were predicted
to 0.4 and 0.6%. Despite the theoretical uncertainty behind
this simple treatment of the shield, it gives consistently good
results for a variety of sizes and styles at both low and high
frequencies.

In conclusion, this paper has shown how simple models
can describe birdcage coil behavior with analytic equa-
tions which are straightforward to understand and evalu-
ate. The formulafor the frequencies of the resonant modes
explicitly shows thelink to the spatial frequencies of elec-
tric and magnetic coupling in the coil, with applicability
to other periodic mesh structures, and its inverse allows
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the inductance coupling values to be found from measured
frequencies. Of perhaps greatest practical value are the
simple methods and equations which predict resonant fre-
guencies from the chosen geometry and dimensions with-
out the need to construct or test any mockups; these are
shown to agree to a high degree of accuracy with measure-
ments on both bare and shielded coils at usefully high
frequencies.

APPENDIX

The formal solution to the birdcage mesh problem is out-
lined briefly below to show that the eigenvalues and coupling
terms are expressed naturally in terms of the DFT. The mesh
eguations are written as the generalized eigenvalue problem
of Eq. [3] with

~ | -
Mo Ml Ile—l IO
My 1 Mo My .
M = . . , I = ,
M; M, Mo
L I
[A1]
and
oL 1
Ci cC2 C2
i -2 i +
E = C2 C1l
= 0
i C2

As pointed out in the text, the matrices M and E are circulant
and therefore possess specia eigenvalue properties. The kth
eigenvector of any circulant matrix M is equal (within a
constant) to the kth vector W* of complex coefficients of
the N-point DFT (10), the mth row or element of which is

WEK = exp(—i2rkm/N). [A3]
The W* are also the mesh currents or eigenvector solutions

to the birdcage problem (to within a constant i,) because
Eq. [3] can be rewritten as a standard eigenvalue problem

c2
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Al = Xl whose matrix A = (M~'E) is till circulant (21).
Since all circulant matrices have the same eigenvectors W¥,
I = i Wk follows directly.
The vector M of eigenvalues M, of the circulant matrix
M is given by the DFT expression
M = (WM, [A4]
where T denotes transpose and M is the column vector of
elements M,,, (10). Since any matrix may be expanded in a
similarity transformation in terms of its eigenvalues and
-vectors, M in Eg. [3] can be factored as
M = [l [A5]
where the columns of | are the eigenvectors | ¥, H denotes
the hermitian conjugate, and u is a diagonal matrix of the
eigenvalues My. If E is similarly factored in terms of the
diagonal matrix of its eigenvalues E,, then the system eigen-
values \, of Eq. [3] reduce with standard matrix manipula-
tions to the ratio of matrix eigenvalues E,/M,. This is the
formal solution to the problem and is completely general for

any structure having matrices E and M which are circulant.
A specific expression for the bandpass coil (containing

1) 1 0
[A2]

1 1 1
—_ 2 — + —
c2 <01 c2>

the low- and highpass coils as special cases) isreadily found.
M is expanded as Eq. [ 5] and the transform for E, with the
values of Eq. [A2] reduces to Eq. [6] for integer k, giving
the final expression in Eq. [7].
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